Storing Data

Arithematic

Instruction Hex Code
0x0001
0x1010
0x1011
0x0010
0x0011
0x0110
0x0111
0x0210
0x0211
0x0a00
0x0a01

0x1a00
Ox1a10
0x0abo
0x0ab1
0x1abe
oxfab@
oxeb10
0x0b11
0x1001
0x0c00
0x0c10
0x1210
0x1211
oxfaoo0
0x2abo
0x2ab1

Arguments
N\A
X
REGID
REGID, X
REGID, REGID
REGID, X
REGID, REGID
X, Y
X, REGID
OPID, X
OPID, REGID
N\A
N\A
REGID
REGID
X
REGID
REGID
N\A
X
REGID
N\A
REGID, X
REGID, X
REGID, X
REGID, REGID
N\A
X
X
N\A
N\A

Banano CPU Hex Instructions

ASM Instruction
hlt
goto
goto
1dr
1dr
sto
sto
sto
sto
calc
calc

inc
dec
push
push
pop
rev
gosub
gosub
ret
jme
jmz
lod
lod
syscall
jms
jsz

Psuedo Code
Halt
Jump to X
Jump to REG
Reg = X
Reg1 = Reg2
Mem[Reg] = X
Mem[Reg1] = Reg2
Mem[X] = Y
Mem[X] = Reg
RegC = OP(RegC, X)
RegC = OP(RegC, Reg)

Reg++
Reg--
Prg.push(X)
Prg.push(Reg)
Reg = Prg.pop()
Reverse PRG
Subroutine at X
Subroutine at Reg
Return
Jump X if REG !
Jump X if REG =
Reg = Mem[X]
Reg1 = Mem[Reg2]
IoPort()
Jump if Prg > 0@

=0
=0

Jump if Prg ==

Summary
Stops program counter from ticking
Jumps program pointer to address at literal
Jumps program pointer to address at register value
Stores literal into register
Stores value of register into another register
Stores literal into memory at register
Stores value of register into memory at register
Stores literal into memory at literal
Stores value of register into memory at literal
Computes register C and literal into register C

Computes register C and register into register C

Increments register

Decrements register

Pushes literal into program stack
Pushes register value into program stack
Pops top of program stack onto register

Reverses the program stack

Starts a subroutine at X, adds position to callstack

Starts a subroutine at reg., adds position to callstack

Resumes program pointer from position in callstack
Jumps to X if register value is not equal to ©
Jumps to X if register value is equal to @

Loads memory from X into a register

Loads memory from register into a register

Sends a request through IoPort - Awaits it to finish.

Jumps to X if program stack has any items

Jumps to X if program stack has no items

Notes

"REGID" is simply a shorthand
for a single value from 0-5
representing each register.
(The register IDs correspond to
the following, in order:
[Program Counter, A, B, C, D,
X, Y, Z, E, F, G, H, I, J])
Arguments are leading values in
memory, these get used and
skipped when executing an
instruction.






